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Abstract. Although the Semantic Web in principle provides access to a
vast Web of interlinked data, the full potential currently remains mostly
unexploited. One of the main reasons is the fact that the architecture
of the current Web of Data relies on a set of servers providing access to
the data. These servers represent bottlenecks and single points of failure
that result in instability and unavailability of data at certain points in
time. In this paper, we therefore propose a decentralized architecture
(P1gnNIC) for sharing and querying semantic data. By combining both
client and server functionality at each participating node and introduc-
ing replication, PIQNIC avoids bottlenecks and keeps datasets available
and queryable although the original source might (temporarily) not be
available. Our experimental results using a standard benchmark of real
datasets show that PIQNIC can serve as an architecture for sharing and
querying semantic data, even in the presence of node failures.

1 Introduction

More and more datasets are being published in RDF format. These datasets cover
a broad range of topics, such as geography, cross-domain knowledge, government,
life sciences, etc. Access to these datasets is offered in different ways, e.g., they
can be downloaded as data dumps, they can be queried via SPARQL endpoints,
or they can be “browsed” via dereferencing URIs.

Once published, however, we are often in a situation where the datasets, or
rather the interfaces to access them, are not available when needed. In fact,
studies found that over half of the public SPARQL endpoints have less than
95% availability [2]. The reason often simply is that maintaining these interfaces
requires considerable resources from the data providers. In practice, this means
that the data necessary to answer a certain query might not be available at a
specific time so that the answer might be incomplete — or in general, the same
query might have different answers at different points in time.

Hence, despite the great potential of the Semantic Web, accessing RDF
datasets today entirely relies on the services offered by the data providers, e.g.,
web interfaces with downloadable datasets, SPARQL endpoints, or dereference-
able URIs. Especially SPARQL endpoints often require huge amounts of re-
sources for query processing, which further increases the burden on the data
providers [9, 20]. Despite recent efforts that proposed to implement monetary



incentives to solve this problem [8], we argue that we can achieve availability by
applying decentralization instead of relying on the availability of single servers
and their functionality. This not only better reflects the nature of the World
Wide Web but also avoids dependencies and single points of failure.

In this paper, we therefore propose PIQNIC (a P2p system for Query process-
iNg over semantIC data). PIQNIC introduces decentralization as a key concept
by building on the Peer-to-Peer (P2P) paradigm and replication. PIQNIC func-
tions as a P2P network of homogeneous clients that can be queried by any node
in the network. By combining both client and server functionality at each peer
and introducing replicas, we avoid single points of failure as (sub)queries can
be processed by multiple alternative peers and the data is still available even
though the original source is not. In doing so, PIQNIC offers solutions to two of
the main problems that the current Semantic Web is suffering from: high query
loads at the data provider’s site (SPARQL endpoints) [20] and availability of
datasets [2]. In summary, this paper makes the following contributions:

— A P2P-based architecture for publishing and querying RDF data (PI1QNIC)

— A customizable scheme for replicating and fragmenting datasets

— Query processing strategies in PIQNIC networks with replicated and frag-
mented data

— An extensive evaluation of the the proposed approaches

This paper is structured as follows. While Section 2 discusses related work,
Section 3 presents the PIQNIC framework and its main concepts. Section 4 then
describes how to process queries in PIQNIC. Section 5 then presents the results
of our evaluation and Section 6 concludes the paper with a summary and an
outlook to future work.

2 Related Work

Recent developments in privacy and personal data on the social Web has inspired
interesting new applications and use cases. The Solid project [13], for instance,
uses a decentralized architecture and Semantic Web technologies to enable per-
sonal online datastores (pod) to be stored separately from applications. In fact,
users decide themselves where a pod is hosted, giving them control over their
data. While the idea of storing Linked Data in multiple locations is central to
our work, Solid focuses on privacy protection of personal data whereas we focus
on the availability of open datasets.

Federated query processing over SPARQL endpoints is a widely used ap-
proach to query over distributed Linked Open Data. To lower the computa-
tional load at the servers hosting the SPARQL endpoints, recent proposals, such
as Triple Pattern Fragments (TPF) [20] and Bindings-Restricted Triple Pattern
Fragments (brTPF) [9], propose to shift part of the load to the client issuing
the query. This, in turn, increases the availability of the servers. Nevertheless,
TPF/brTPF servers still represent a single point of failure; if the server is not
available, the hosted datasets are not available either, which is the problem we
are targeting in this paper.



To further share the computational load in a TPF setting, processing
SPARQL queries in networks of browsers has been proposed [6,7,16]. The key
principle is to share the computational load among a set of clients based on
the functionality offered by their browsers and caching of recently used datasets
using a collaborative caching system based on overlay networks [5]. However,
browsers are relatively unstable nodes with very limited processing power and
storage capacity, which naturally limits the general applicability. In contrast, we
aim at a relatively stable network with more powerful nodes and split datasets
into smaller fragments that are replicated.

Replication of triple pattern fragments has been considered in [15], where
fragments are replicated at multiple servers to allow for balancing the server
loads and providing fault tolerance. While [15] considers a fixed set of servers
that provide access to a fixed set of replicated fragments, and clients that are
aware of the allocation of fragments to servers, PIQNIC has a fault-tolerant P2P-
based architecture where clients also serve replicated fragments to other clients,
which naturally allows for handling dynamic behavior of the clients.

P2P systems in general vary in their level of decentralization. Structured
P2P systems organize their peers in an overlay network using, for instance,
Distributed Hash Tables (DHTSs) to decide were to store and find particular
data items. Some of these systems were proposed to support RDF data [3,10,11].
The key principle of these systems is that the connections between peers, i.e., the
layout of the network, and the data placement is imposed on the participating
peers — restricting their autonomy. As a consequence, such systems are vulnerable
to situations where many peers leave and join the network as this might require
major reorganizations of structure and data placement in the network.

Unstructured P2P systems, on the other hand, retain a high degree of their
peer’s autonomy, i.e., there is no globally enforced network layout or data place-
ment. The basic way of processing queries in such networks is flooding, i.e, a
request is flooded through the network along the connections between neigh-
boring peers until an answer has been found. These systems are therefore more
reliable with respect to dynamic behavior, i.e., clients joining and leaving the
network. The prospects of unstructured P2P techniques as a decentralized archi-
tecture for Linked Data have also been recognized in recent vision papers [14,17].
While these papers provide interesting insights in the benefits of decentraliza-
tion and replication, we propose a concrete system and implementation for query
processing over a network of unstructured P2P clients.

3 PIQNIC

P1QNIC builds upon basic principles of P2P systems; a client software is running
at each participating peer that (i) provides access to a network of clients with-
out central authority and (ii) offers access to locally stored datasets at other
clients in the network. To minimize local space consumption at a client, we use
HDT [4] files. As common in P2P networks, clients do not have global knowl-
edge of all the peers in the network and their connections. Hence, PIQNIC clients



always maintain a partial view of the entire network. This partial view consists
of (i) nodes with related data, i.e. data that use common URI/IRIs, to ensure
that queries over multiple datasets can be completed efficiently and (ii) random
neighbors to ensure connectivity of the entire network. In the following, we use
the terms client and node interchangeably.

Before going into details on query processing (Section 4), this section first
introduces the notion of datasets and data fragments (Section 3.1). Afterwards,
Section 3.2 outlines PIQNIC’s network architecture. Last, Section 3.3 describes
the dynamic behavior of PIQNIC nodes, maintaining a partial view over the
network, and data replication.

3.1 Data Fragmentation

Since RDF datasets can be quite large (e.g., YAGO3 [12] with over 100 million
triples), replicating entire RDF datasets at another node might not always be
possible or useful. Hence, inspired by the TPF-style of accessing data, we propose
a customizable approach for fragmenting large datasets.

Consider the infinite and disjoint sets U (the set of all URIs/IRIs), B (the
set of all blank nodes), L (the set of all literals), and V' (the set of all variables).
An RDF triple t is a triple, s.t. t € (UUB) xU x (UUBUL), and a triple pattern
tp is a triple s.t. tp € (UUBUV) x (UUV) x (UUBULUV). A knowledge
graph G is a finite set of RDF triples.

Definition 1 (Fragment). Let Gy be a knowledge graph that includes all RDF
triples in a PIQNIC-network. A fragment f is a 4-tuple f = (T, N,u,i) with the
following elements:

e T is a finite set of RDF triples, and T C Gy,

e N is a set of PIQNIC nodes containing the fragment,

e w is a URI/IRI that identifies the fragment, and

e i is an identification function that determines whether the fragment contains

triples matching a given triple pattern.

Identification functions are mainly used during query processing to determine
whether or not a triple pattern should be evaluated over a fragment.

Following the principle that a data provider uploads a dataset using a local
P1QNIC client, we say that datasets are “owned” by a specific node. The owner
node manages the allocation of replicas to other nodes in the network. For more
details on this, please see Section 3.3. We then define a dataset as a set of
fragments:

Definition 2 (Dataset). 4 dataset D is a triple D = (F,u,0) with the follow-
ing elements:
e [ is a set of fragments,
e u is a URI/IRI that identifies the dataset, and
e 0 is an identifier of the “owner” node, i.e., the node that uploads F to the
network.



A fragmentation function F is then defined as follows.

Definition 3 (Fragmentation function). A fragmentation function F is a
function that, when applied to a knowledge graph G, creates a set of fragments
F=F(G),ie, F(G):Gw 29.

Concrete fragmentation functions can result in different levels of granularity.
For example, a fragmentation function F¢ that results in F(G) = {G} is a
very coarse-granular fragmentation function that does not split up the original
knowledge graph G. On the other hand, a fragmentation function Fr that results
in Fr(G) = {{t} | t € G}, creates a separate fragment for each individual triple
is very fine-granular. PIQNIC uses of a predicate-based fragmentation function
Fp as defined in Definition 4.

Definition 4 (Predicate-based fragmentation function). Let p; denote the
predicate of a triple t. A predicate-based fragmentation function Fp(G) = {F, |
dteG:p=pANNM €G)py =p]:t € F,} defines one fragment for each
unique predicate in the knowledge graph G.

Naturally, more complex fragmentation functions can be defined. However, in
its current implementation PIQNIC uses Fp because it has a straightforward
implementation and is guaranteed to generate pairwise disjoint fragments as
each triple has exactly one predicate, i.e., for any two fragments f;, f; € Fp(G)
it holds that f; N f; = 0.

Ezample 1 (Fragmentation). Consider example knowledge graph Gg in Table 1a.
Applying Fp to Gg results in the set of fragments f1, fa, f3 f4, and f5 shown in
Table 1b: one fragment for each unique predicate p1, p2, p3, pa, and ps.

Knowledge graph Gg f 5 A f a

{apib)fapsc) (apsd) & pr D) |{a p2 )| (a ps A |{E s d)[{e ps &)

( (

(b p2e) (bp1d) (bpsd)

(b p1 d)[(b p2 e)|(b p3 d)|(d pa f)
{cpa d) {dprc) (cpaa) 1 o) cpmalicpnd)

(fpsad) (dpsf) (epsg)
(a) Knowledge graph Gg (b) Fr(Gr)

Table 1: Applying Fp to a knowledge graph Gg

3.2 Network Architecture

A PI1QNIC network consists of a set of interconnected nodes, each maintaining a
local data/triple store to manage a set of fragments. A node is defined as follows.

Definition 5 (Node). A node n is a triple n = (I, A, N) where
o [ is the set of fragments located on the node,
o A is a set of datasets owned by the node, and
e N is a set of so-called neighbor nodes in the network.



FEach node n maintains a set n.N of neighbor nodes representing a partial view
over the network. In order to assure that (i) related data is close in the network
to increase the completeness of query answers, and (ii) all data and nodes can be
reached (connectivity of the network), n./N contains nodes with related fragments
as well as random nodes in the network.

To account for changes in the network, PIQNIC uses periodic shuffles [21]
between pairs of nodes. A node n selects a random node n’ in n.N, which it
sends a subset of its neighbors removing them from its own partial view. This
subset consists of the least related neighbors based on the “joinability” of the
nodes’ fragments.

Definition 6 (Fragment Joinability). Let s; and o; be the subject and object
of triple t, Gn the knowledge graph containing all RDF triples in a network, and
f1, f2 € Fp(Gn). f1 and fa are said to be “joinable”, denoted f1 1L fo, iff for at
least one triple t1 € fi there exists a triple to € fo, s.t. {s4,, 04, } N {s1,, 0, } # 0.

We observe that the binary relation L is symmetric and reflexive. It is symmetric
since if £; has a subject or object in common with to, 5 has the same subject or
object in common with t;. It is reflexive since any triple ¢ has its own subjects
and objects in common with itself.

Fragment joinability only considers if two fragments are joinable, and does
not consider the rate of overlap between them. This is to avoid favoring large
fragments where the absolute number of joint subjects and objects is likely to
be higher than for small fragments because of the higher number of triples. The
relative number of overlapping subjects and objects is not a good alternative
either as fragments with a small overlap might still be important to achieve
complete query results.

Based on Definition 6, we can now define a relatedness metric to rank a node’s
neighbors. We consider only non-identical joinable fragments. Hence, given a
node n the goal is to select the k least related nodes R, where R C n.N s.t. we
minimize the objective function in Equation 1.

|Join(n,n;)|

Rel(n) = arg min T

RCn.N

st. |R| =k (1)

n,en.N

where Join(n,n;), as defined in Equation 2, is the set of fragments in n that are
joinable with one of node n;’s fragments that does not have the same fragment
identifier.

Join(nl,ng) = {fl S nl.F ‘ Hfg S ’ng.F : fl AL f2 A fl.u 7& fgu} (2)

Ezample 2 (Neighbor Ranking). Consider the fragments in Table 1b and their
assignment to the 4 nodes in Figure la. Note that fi, fo, and f3 are pairwise
joinable. We observe that fy AL f1, fi 1L f3, and f5 1L f5. Assuming we would
like to select the least related neighbor of ny to shuffle, we apply Equation 1 and
obtain:

e nqy: Since fy Il f1 and f5 1L fo, then ry =2/2 =1



e noy: Since fy L f3 and f5 1L fo, then 1 =2/2 =1

® N3: Since f4 AL fl, f4 AL f37 f5 _ILL f1 and f5 _Jéf_ fg, then rs = 1/2 =0.5
This results in n3 being the least related neighbor, and as such it is removed
after the shuffle and replaced by a new neighbor n; (Figure 1b).

To compute relatedness in a running system, the nodes exchange the sets of
objects and subjects in a compressed representation, such as bitvectors, which
can be stored locally for future use.

ni n2 ni n2
fi, f2 f2, f3
=
E A
e ns Uz
=
fi, fs folb o fas fs f2; fa fas f5
< <
(a) Joinable fragments at n4’s neigh- (b) Result of shuffling n4’s least
bors (n4.N) related neighbors (n4.N)

Fig. 1: Computing the relatedness of n4’s neighbors and shuffling. Red arrows denote
a connection to a neighbor in list ny. N, and blue arrows to neighbors after a shuffle.

3.3 Replication of Datasets

Any node participating in a PIQNIC network can upload a dataset and become
its owner node. When uploading a knowledge graph G, a fragmentation function
(Fp(G)) is applied to obtain a set of fragments. This set of fragments is then
used to create a dataset D.

Allocation of fragments in a PIQNIC network follows a chaining approach,
i.e., the owner node passes the fragment on to one of its neighbors, which inserts
the fragment into its own local data store and forwards the fragment to one of its
neighbors. This continues for a certain number of steps, referred to as replication
factor (ry). If a node cannot insert a fragment (for instance because of too little
available storage space), it returns one of its neighbors to the previous nodes.
Lastly, the set of nodes at which the fragment has been inserted is returned to
the owner node.

Ezample 38 (Allocation and replication of a fragment). Let us consider clients ¢y
and ¢y in Figure 2a and fragments f;, f2, and f3 from Table 1b. Suppose c;
wants to allocate f3 with ry = 1 and selects neighbor ¢;. f3 is then forwarded
to ¢y with rp = ry —1 = 0. f3 is therefore inserted into c;’s local data store,
resulting in Figure 2b. {c1} is then returned to ¢z as the set of nodes in which
f3 has been inserted.
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(a) Allocating f3

C1 C2
fl : (a,p17b>,<b,p1,d>,<d,p1,c> f2 : <aap27c>7 <b7p276>v <Cvp2aa>
f2:{a,p2,¢), (b, p2,€), (¢, p2,a) | f3: {a,p3,d), (b,ps,d), (c,p3,d)

f3 : <aap3>d>> <b7p3>d>7 <C7p37d>

(b) States of ¢1 and c2 after allocation

Fig. 2: Allocating fragment f3 at client ¢; with ry = 1. Dashed lines denote the allo-
cation of a fragment, solid lines denote a neighbor relation.

If a node containing a fragment from D.F' fails, the owner will allocate the
fragment to another node, ensuring the continued availability of the fragment.
If the owner itself fails, another node can take over the task of maintaining
availability.

Besides making sure fragments are always available, PIQNIC exposes the fol-
lowing operations, which the owner of a dataset D can execute: (i) add triples
to fragments in D, (ii) remove triples from fragments in D, (iii) allocate frag-
ments to further nodes, and (iv) revoke an allocation of a fragment from a node.
This update is executed locally on the owner node, after which it forwards the
updated fragment to the nodes it is allocated to.

Joining a PIQNIC network can be achieved by knowing an arbitrary node
and making it a neighbor. Consider, for instance, a node n; wants to join the
network via node no; ny therefore sends a message to ny, which replies with a
subset of its neighbors. n; will then take over some replicas of these neighbors
and gradually become a full member of the network.

4 Query Processing

Any node in a PIQNIC network can issue queries. Query processing follows the
basic principle of flooding that is employed in P2P systems [1], i.e., a query is
forwarded to a peer’s neighbors, which in turn forward it to their neighbors until
a certain Time-To-Live (TTL) value/distance is reached. In P1gNIC, a SPARQL
query q at a node n; is processed in the following steps:

1. Estimate the cardinality of each triple pattern in ¢ using variable count-
ing. The order in which triple patterns are processed is determined by this
estimation, i.e., most selective triple patterns are evaluated first.

2. Evaluate ¢’s triple patterns, starting from n;’s local datastore, over the data
accessible via n;’s neighbors by flooding the network using a specified TTL
value.

3. Receive partial results from the queried nodes in the network (only nodes
with results reply).



4. Compute the final query result by combining the intermediate results of the

triple patterns and the remaining operations necessary to complete q.

We use fragment identifiers to avoid querying the same fragment twice on dif-
ferent nodes. Moreover, if a fragment is available locally, we use that and do not
query it again on another node.

Obviously, step 2 can be implemented in different ways. But before going
into details on this aspect, let us first define an identification function (i in the
Definition 1) to decide whether a fragment is relevant for a particular triple
pattern or not. As fragmentation is defined on predicates, we use a predicate-
based identification function.

Definition 7 (Predicate-based identification function). Let Fp(Gy) be a
the set of fragments in a network, f € Fp(Gn) be a fragment, tp be a triple
pattern and pyp the predicate of tp. A predicate-based identification function
Frp(f,tp) returns true iff Yt € f : py = pyp or pyp s a variable.

A triple ¢ is said to be a matching triple for a triple pattern ¢p iff there exists a
solution mapping p s.t. t = p[tp], where pltp] is the triple obtained by replacing
variables in tp according to pu.

Definition 8 (Solution mappings [20]). Let U, B, L,V be the set of all URISs,
blank nodes, literals, and variables. Then the answer S to a SPARQL query is a
set of solution mappings s.t. a solution mapping is a partial mapping @ : V +—
(UUBUL).

We implemented and evaluated three query processing strategies that differ in
step 2 of the above description: Single, Bulk, and Full.

Single Strategy The Single approach is inspired by query processing in
TPF [20] and Jena ARQ!. The triple patterns of a query g are processed se-
quentially. To process the current triple pattern we use the intermediate results
from the node’s local fragments (step 1) and previously computed triple pat-
terns. We instantiate the triple pattern with the already known result mapping
and send it to the neighbors. This is done for each known solution mapping
separately, hence the name of this strategy: Single.

Bulk Strategy Obviously, the Single strategy can be improved by sending sets
of solution mappings along with a triple pattern throughout the network instead
of individual solution mappings. This is a similar optimization as proposed in [9]
to improve TPF query processing. Hence, using the Bulk strategy we expect
that considerably fewer messages are sent throughout the network. Ideally, all
bindings are sent along in a single message. However, for some triple patterns
there is a high number of intermediate solution mappings, e.g., query L1 in our
evaluation has more than 232,000 solution mappings for the variable ?results.

! https://jena.apache.org/documentation/query/index.html



Propagating such a large number of bindings through the network might easily
become a problem because of the message size. Hence, in such cases, we send
the bindings in groups of up to s,, bindings. In our current implementation, we
use a default value of s, = 1,000 (empirically determined based on the data
and queries used in our experiments).

Full Strategy In contrast to the other strategies, the Full strategy does not
include the results of already computed solution mappings in the queries sent
throughout the network. Instead, it forwards the triple patterns as defined in
the original input query to the neighbors and exploits the fact that this can
be done in parallel (instead of sequentially as in the other strategies). However,
as this strategy cannot exploit the selectivity of triple patterns if instantiated
with solution bindings, more data has be sent throughout the network. Likewise,
more data has to be processed locally at the querying node to compute the final
result.

5 Evaluation

We implemented a prototype PIQNIC client? in Java 8 using the HDT Java
library? for the local datastore and extended Apache Jena? to support the three
query processing approaches discussed in Section 4.

Experimental Setup

We ran our experiments on a server with 4xAMD Opteron 6376, 16 core proces-
sors at 2.3GHz, 768KB L1 cache, 16MB L2 cache and 16MB L3 cache each (64
cores in total), and 516GB RAM. To evaluate our approach we used Large-
RDFBench [18], which extends FedBench [19] with additional datasets and
queries. LargeRDFBench comes with 13 datasets with altogether over 1 bil-
lion triples and was designed to evaluate federated SPARQL query processing
engines. LargeRDFBench provides a total of 40 queries divided into four dis-
tinct sets: simple (S), complex (C), large data (L), and Complex and large data
(CH). However, to enable a more fine-granular analysis, we distinguish the two
subsets of S that were originally defined in FedBench but merged together in
LargeRDFBench: cross domain (CD) and life sciences (LS).

In our experiments, we varied a broad range of parameters. However, due
to space restrictions we do not show all experimental results in this paper but
focus on a subset. More evaluation results are available on our website®. For each
experiment, we measured the following metrics:

% The source code is available at https://github.com/Chraebe/PIQNIC
3 https://github.com/rdfhdt/hdt-java

4 https://jena.apache.org/

® http://qweb.cs.aau.dk/pignic/
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e Query Ezecution Time (QET) is the amount of time it takes to answer a
query, i.e., the time elapsed between issuing the query and obtaining the
final answer.

e Completeness (COM) measures how complete the computed set of answers
for a query is; expressed as the percentage of computed answers in compar-
ison to the complete set of answers.

e Number of Transferred Bytes (NBT) is the total number of bytes transferred
between nodes during query execution.

e Number of Messages (NM) is the total number of messages exchanged be-
tween nodes during query execution.

Each experiment was run as follows: all queries in the query load were executed
3 times at randomly chosen clients in the network — the reported measurements
represent the averages of the 3 executions.

Experimental Results

Unless stated otherwise, we use the following default values: #Nodes: 200, TTL:
5, Replication 5%, #Neighbors: 5. We used a timeout to 1200 seconds, i.e., 20
minutes.

Performance of query execution strategies Since Full timed out for all
queries in groups L and CH and all but a few queries in C, and Single timed
out for most queries in the aforementioned groups, in this set of experiments
we focus our discussion on query groups CD and LS — the omitted results can
be found on our website. The corresponding query execution times (QET) are
shown in Figure 3.

As we can clearly see, in general Bulk performs much better than the other
two approaches with respect to execution time. It is not surprising that Bulk in
general performs better than Single as sending groups of bindings instead of
sending each binding separately considerably reduces communication and com-
putational overhead. While Full does perform quite poorly in most cases, it is
faster than both Bulk and Single in rare cases, e.g., LS7. This is due to the fact
that some triple patterns have a very low selectivity. In such cases, almost all
triples in a fragment are relevant and it is therefore more efficient to download
the entire fragment instead of exchanging multiple rounds of messages with large
amounts of data.

This is evident from Figure 4, which shows the number of messages sent
through the network. Not surprisingly, in all cases Single sends more messages
throughout the network than the two other approaches. While expectedly Full
is better in this regard than Bulk, they are still quite similar in most cases. This
is due to the cardinalities of most triple patterns being lower than 1,000, and
thus only one message is sent. The queries that did not time out all delivered
complete query results (100% completeness).

Figure 5 shows the number of transferred bytes (NTB) for queries in groups
CD and LS. Aqain, we leave out queries that timed out. Not surprisingly, Full
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transfers the most amount of data in all cases. For most queries Single and
Bulk are comparable and the differences negligible.

Robustness of the network We have also evaluated how PI1QNIC networks
perform in the presence of node failures using the Bulk strategy. Hence, to test
robustness and availability of data, we focused on the Bulk strategy and the
query sets CD and LS. Figure 6 shows the average completeness of queries with
a varying number of failing nodes. In the experiment, we executed all the queries
and noted the completeness, i.e., we gradually killed a randomly selected number
of nodes until no nodes were left in the network. The network was given no
recovery time after nodes had been killed. The results show the robustness of
PI1QNIC against node failures; the results start with a completeness of 100% and
stayed above 90% until less than 60% of the nodes were running. Afterwards,
the completeness gradually decreased.

When giving the network recovery time between each run, i.e., allowing all
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Fig. 5: NTB for Single, Bulk, and Full over queries CD and LS. Note that the y-azxis
is in log scale.
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Fig. 6: COM for queries when varying the number of nodes failures (Bulk strategy, no
recovery time).

nodes to perform 3 shuffles before the next set of nodes is killed, PIQNIC is able
to keep the completeness close to 100% (the lowest was 94,44% and was due to
a single query not being answered) even when 50% of the nodes failed. However,
we should mention that query execution time was affected since each node has
more fragments to look through. This shows that PIQNIC is able to keep data
available through replication at the tradeoff of increased execution time as it is
more expensive to find the relevant fragment.

Impact of Time-To-Live Intuitively, a higher TTL value gives access to a
larger part of the network. However, a large TTL value also means sending
messages to more nodes. In fact, since we use a flooding technique, the amount
of sent messages increases exponentially with the TTL value. To systematically
analyze the impact of the TTL value, we compare COM and QET for three
different TTL values; 3, 5, and 10. Figure 7 shows average completeness and
execution time for each of the 5 groups of queries in our query load using the
Bulk strategy. Even though many of the queries in groups L and CH timed
out, they still provided some results before timing out. In general, a TTL value
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of 3 results in incomplete results for all query groups. We observe that even
though a TTL value of 10 gives in total more complete results, the additional
query execution time indicates that this might not necessarily be a good tradeoff.
Instead, a TTL value of 5 shows almost as complete results with lower execution
times.

TTL: In 3 0n 5 10
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Fig.7: Average COM and QET the Bulk strategy and TTL 3, 5, and 10 (QET log
scale).

6 Conclusions

In this paper, we proposed PIQNIC (a P2p system for Query processiNg over
semantIC data), to process queries over semantic datatsets. PIQNIC is inspired by
recent advances in decentralized Semantic Web systems as well as P2P systems
in general, and provides a client that, in addition to providing query access
to vast amounts of data, functions as a server maintaining a local datastore.
We presented a general architecture for sharing and processing RDF data in
a decentralized manner and customizable approaches for data fragmentation
and query processing over a network of clients. Our experiments show that the
Bulk strategy provides the best performance on average and that PIQNIC is
able to tolerate node failures. As highlighted by one of our experiments, it is
not straightforward to find the a good balance between completeness, TTL, and
query execution time. We will therefore investigate this problem in our future
work.
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